schweikh2/schweikh2.c
#define C " "
#define O( _ ) # _
#define R( n , d ) e ( n , d )
#define e(p,o)o##p
#define D O ( % ) O ( l ) O ( d )
#define U R ( e ( g , n ) , e ( o , l ) )
#define M H ( R ( e ( c , i ) , t ) , R ( e ( a , t ) , s ) )
#define P H ( R ( e ( f , t ) , n ) , R ( e ( i , r ) , p ) ) (
#define H(O,r)R(O,r)
#include<stdio.h>
H ( R ( e ( f , e ) , e ( d , e
) ) , R ( e ( p , y ) , t ) ) H
( R ( e ( t , c ) , u ) , R ( e
( r , t ) , s ) ) { U n , t ; }
F ; H ( R ( e ( f , e ) , e ( d
, e ) ) , R ( e ( p , y ) , t )
) H ( R ( e ( d , e ) , e ( n ,
g ) ) , R ( e ( i , s ) , e ( n
, u ) ) ) U B ; M F I [ 4 * 5 ]
, w [ 4 * 5 ] , p [ 4 ] = { { 9
, 1 } , { 1 , 1 } , { 1 , 1 } ,
{ 6 * 7 , 1 } } ; M R ( e ( t ,
n ) , i ) J ; M R ( e ( d , i )
, e ( o , v ) ) o ( F f ) { e (
f , i ) ( f . t - 1 ) { J = P D
O ( / ) D , f . n , f . t ) ; }
R ( e ( e , s ) , e ( l , e ) )
{ J = P D , f . n ) ; } } M R (
e ( d , i ) , e ( o , v ) ) n (
F * f ) { U a = ( * f ) . n , b
= ( * f ) . t ; e ( f , i ) ( b
) { H ( R ( e ( e , l ) , i ) ,
e ( h , w ) ) ( a ) { U i = b %
a ; b = a ; a = i ; } b = b < 0
? - b : b ; ( * f ) . n e ( = ,
/ ) b ; ( * f ) . t e ( = , / )
b ; } } R ( e ( t , n ) , i ) R
( e ( n , i ) , e ( a , m ) ) (
R ( e ( t , n ) , i ) a , R ( e
( r , a ) , e ( h , c ) ) * v [
] ) { B m , W ; R ( e ( t , n )
, i ) i , c ; R ( e ( r , o ) ,
f ) ( i = 1 ; i < 5 ; i = i + 1
) { e ( f , i ) ( a > i ) { J =
H ( R ( e ( f , n ) , a ) , R (
e ( c , s ) , s ) ) ( v [ i ] ,
D O ( / ) D , & p [ i - 1 ] . n
, & p [ i - 1 ] . t ) ; } n ( p
+ i - 1 ) ; } I [ 0 ] = p [ 1 ]
; R ( e ( r , o ) , f ) ( i = 0
; i < p [ 0 ] . n ; i = i + 1 )
{ I [ i + 1 ] . n = I [ i ] . n
* p [ 2 ] . t + p [ 2 ] . n * I
[ i ] . t ; I [ i + 1 ] . t = I
[ i ] . t * p [ 2 ] . t ; n ( I
+ i + 1 ) ; } R ( e ( r , o ) ,
f ) ( W = ~ ( ~ 0 e ( < , < ) p
[ 0 ] . n * 2 ) ; ~ ( B ) 0 - W
; W = W - 1 ) { w [ c = 0 ] = I
[ 0 ] ; R ( e ( r , o ) , f ) (
m = W , i = 1 ; ! ( i > p [ 0 ]
. n ) ; i = i + 1 , m = m / 4 )
{ e ( f , i ) ( ( m & 3 ) < 2 )
{ e ( f , i ) ( m & 1 ) { w [ c
] . n e ( = , * ) I [ i ] . t ;
e ( f , i ) ( ( w [ c ] . t e (
= , * ) I [ i ] . n ) < 0 ) { w
[ c ] . n e ( = , * ) - 1 ; w [
c ] . t e ( = , * ) - 1 ; } } R
( e ( e , s ) , e ( l , e ) ) {
w [ c ] . n e ( = , * ) I [ i ]
. n ; w [ c ] . t e ( = , * ) I
[ i ] . t ; } } R ( e ( e , s )
, e ( l , e ) ) { w [ c = c + 1
] = I [ i ] ; } } R ( e ( r , o
) , f ) ( m = W , i = c = 0 ; i
< p [ 0 ] . n ; i = i + 1 , m =
m / 4 ) { e ( f , i ) ( ( m & 3
) > 1 ) { w [ 0 ] . n = w [ 0 ]
. n * w [ c + 1 ] . t + ( ( m &
1 ) ? - 1 : + 1 ) * w [ c + 1 ]
. n * w [ 0 ] . t ; w [ 0 ] . t
= w [ 0 ] . t * w [ c = c + 1 ]
. t ; } } n ( w ) ; e ( f , i )
( ! p [ 3 ] . t e ( | , | ) ( !
( p [ 3 ] . n - w [ 0 ] . n ) e
( & , & ) ! ( p [ 3 ] . t - w [
0 ] . t ) ) ) { R ( e ( r , o )
, f ) ( m = W , i = 0 ; i < p [
0 ] . n ; i = i + 1 , m = m / 4
) { o ( I [ i ] ) ; J = P C O (
% ) O ( c ) C , O ( * ) O ( / )
O ( + ) O ( - ) [ m & 3 ] ) ; }
o ( I [ i ] ) ; J = P C O ( = )
C ) ; o ( w [ 0 ] ) ; J = P O (
% ) O ( c ) , e ( 0 , 1 ) ) ; }
} H ( R ( e ( n , r ) , u ) , R
( e ( t , e ) , r ) ) J - 1 ; }