Reusing XML Processing Code in non-XML
Applications

Version 1.0, 16 April 2005

Oleg Paraschenko

Saint-Petersburg State University,
7-9, Universitetsjaya nab,
Saint-Petersburg, Russia

olpaQuucode.com

Abstract. XML can be considered as a representation of hierarchical
data, and the XML-related standards — as methods of processing such
data. We describe benefits of XML view on legacy data and its process-
ing, and suggest a method to develop XML tools and make them reusable
for different tree-like structures in different programming languages.
Our approach is to use virtual machine technology, in particular, the
Scheme programming language. We’re taking the unusual step of using
the Scheme syntax itself as a native virtual machine language. Together
with the SXML format and Scheme implementations tuning, it gives us
the XML virtual machine (XML VM).

Reference implementations are ready for the Python and C languages.
We describe a library for XSLT-like transformations of the Python parse
trees and a special version of the GNU find utility which supports XPath
queries over the file system.

1 Introduction

The basis of some applications is hierarchical data structures plus methods of
processing the data. Possible examples are compilers, interpreters and text pro-
cessors. The former two may use abstract syntax trees (ASTs) to represent results
of parsing a program and some other trees to deal with code transformations.
Text processors may use trees to represent the structure or the formatting prop-
erties of a document.

Although the applications are from different domains, the basic operations on
trees are the same. For example, getting list of children is a standard functionality
for any tree. Some more advanced operations (for example, getting children with
filtering) are also common. The problem is that possibly complex code for the
advanced operations should be written and being updated for all the tree models,
so maintenance become nightmare.

The possible solution for elimination of code duplication is to unify the tree
models. As XML [1] is now extremely popular, it’s reasonable to choose XML
as an universal representation for trees. For needs of our work, the most fruitful



2 Oleg Paraschenko

feature of XML is existence of XML-related standards which in fact are design
patterns for tree processing. And one of the most useful standards is XPath [2].
In this paper, we give examples of XML and XPath and discuss benefits of
seamless use of XML tools in legacy applications.

XML is not the only candidate for universal data representation. Lisp gave
the world S-expressions [8], which are much older than XML, and techniques of
processing S-expressions. Comparing and contrasting Lisp and XML is a flame
topic [9]. Our work combines both worlds together, and we describe SXML [11]
format, SXML tools, and their relationship to XML.

Having XML and Scheme described, we introduce an XML virtual machine
(XML VM) which is based on the SXML library and uses the Scheme program-
ming language itself as a virtual machine. This is a quite novel approach, and
we advocate for it describing;:

— why use Scheme,
— drawbacks of alternative approaches, and
— seamless integration of the VM and a host language.

The SXML tools and Scheme implementations were not intended for a such
use, so their integration into the united VM was a challenging task with obstacles,
some of which are mentioned.

Finally, we describe working applications which prove the idea of using XML VM
in non-XML applications. These examples are not only proofs of the concept,
but also are reference implementations for the Python and C programming lan-
guages.

2 XML

Extensible Markup Language (XML, [1]) is a text format which helps to repre-
sent a logical structure in documents. Here is the example of a possible document
in the XML format:

<article id="hw">

<title>Hello</title>

<para>Hello <object>World</object>!</para>
</article>

Ignoring details, one can said that XML documents consist of elements and
attributes. Elements specify named text extents and attributes curry properties.
Elements should be properly nested, so any XML can be mapped to a tree.

One of the keys in the success of XML is interoperability. When different
legacy systems talk to each other, they usually speak in XML. Any data can be
mapped to XML, but the most natural for XML is to be mapped to hierarchical
data.

Important side of XML is plenty of standards. They cover most of issues
related to data presentation, validation, transformation and exchange. In fact,
they introduce design patters for tree processing.



Reusing XML processing code 3

There are tools designed to work with XML, and sometimes instead of pro-
cessing data inside an application itself, it’s easier to export data to XML, process
them using XML tools and import the result back.

Some of such tools are those which implement XPath [2] and XSLT [3] stan-
dards. XPath is a language for navigation over XML trees, and XSLT is a tem-
plate language for tree transformation.

3 XPath

XPath [2] is a language for navigating, matching and querying on XML data.
An XPath expression is a series of location steps divided by the slash symbol
(/). A location step has three parts:

— an axis, which specifies the tree relationship,
— a node test, which specifies the node type, and
— zero or more predicates, which use arbitrary expressions to filter nodes.

Here is the example of an XPath expression:
/child: :article[attribute: :id="hw’]/child: :para

This XPath consists of two location steps. The first step uses child axis to
select all children of the root node, the node test filters those which are named
article, and the predicate filters those which have an attribute id set to the
value hw. The second step selects all the paragraphs (elements para) of the article
selected.

There is a number of syntactic abbreviations that allow common cases to be
expressed concisely. For example, the XPath above can be also written as:

/article[@id=’hw’]/para

4 Benefits

Instead of writing custom code for hierarchical data processing, we suggest to
provide a seamless mapping between legacy data and XML, and use XML tools to
process the legacy data through XML. This approach has a number of advantages
which are discussed below. At the moment, we partially limit ourselves to XPath,
but the following items are valid for other standards too.

One of the main benefits of domain-specific languages (DSLs), and XPath
in particular, is separation of concerns. Tree processing usually is not a domain
area of an application, but an auxiliary functionality. It’s better to concentrate
on a high-level logic of the applications, and leave supporting technical details
to a DSL language.

One of the nice things about XPath (and DSLs in general) is that it is concise.
We have experience of working with a good enough legacy library, which had
a function for getting a child (any or with some name) by position (positive or



4 Oleg Paraschenko

negative). The function was of more than 50 Java lines, but the corresponding
XPath expression is trivial: ‘name [i]’.

Navigation over tree is quite a simple task, but anyway the code may contain
bugs. Fixing them takes developers’ time and resources. It’s better to integrate
an already existing and tested XPath library.

Another maintenance task with the library mentioned was its improving. For
example, initially the function supported only positive positions. We also were in
need for more sophisticated filters. Without switching to XPath, there were two
ways to continue. One was to introduce new similar functions and suffer from
code duplication. Another was to make the function more complicated. But this
way leads to reinvention of XPath, and the quality of the result may be too poor
comparing to XPath.

The issues above are technical. And here are some more items, now of the
project management level.

First of all, XPath and some other XML standards are well-known and famil-
iar to many developers. They either already know them or can learn them fast
due to plenty of documentation and books. It is not so with legacy code. Devel-
opers may need much time before starting to understand and use home-grown
libraries.

The next item is the mapping between legacy data and XML is not only
for XPath. Implementations of other XML standards also may suit the needs of
developers, providing the same benefits as for XPath.

The last but not the least is marketing. Support of popular specifications
gives us yet another argument for advertising a product or software development
services.

5 SXML, the Lisp Approach

Lisp is a family of computer languages. The most popular dialects are Com-
mon Lisp [4] and Scheme [5]. In Lisp, data is representing using so-called S-
expressions [8], or Symbolic Expressions, or ‘sexps’, defined recursively.

Just as XML, S-expressions can represent any data structures, including hi-
erarchical, and Lisp is good in processing them. There are a lot of discussions
on comparing S-expressions, Lisp and XML (for example, see [9] and [10]). In
our work we use combination of useful features of XML and Lisp worlds.

The most developed Lisp approach to XML processing is the SXML for-
mat [11] for Scheme. It defines an XML representation in terms of S-expressions
and provides a growing number of tools [12].

The SXML format uses lists to represent an XML tree. In each list, the first
symbol is the name of an XML element node, and other list items are the children
of the node. There is a set of special symbols to specify non-element XML nodes.
For example, list of attributes is stored under the special symbol ‘@’.

Here is the SXML representation of the sample XML document:

(article (@ (id "hw"))



Reusing XML processing code 5

(title "Hello")
(para "Hello " (object "World") "!"))

Some XML standards are adopted to SXML. For example, there is SSAX [13],
an XML parser in Scheme with SAX interface, SXPath [14], an analogue of
XPath, STX [15], a compiler for a subset of XSLT, and there is possibility for
(X)Querying XML in Scheme [16].

A useful feature of SXML tools is possibility to mix processing enforced by a
standard with processing in Scheme. It can be used to write concise and effective
programs. For example, the paper [17] demonstrates practical tasks for which
SXSLT suits better than XSLT.

While most of the SXML tools are just analogues of XML standards, some
core XML standards are implemented without deviations. Among these tools
are the SSAX XML parser [13] and the DDO SXPath [18] library for XPath
processing.

6 XML Virtual Machine

The previous sections advocated that instead of developing legacy methods for
hierarchical data processing, it’s better to use approaches based on XML stan-
dards.

The simplest approach is to export data as XML, process it and import back.
While it works well for one-time tasks, permanent serialization and deserializa-
tion is not an efficient solution.

The way of implementing a given XML standard in given programming lan-
guage and data structure is not effective due to plenty of different software
platforms and data formats. Developing XML standards complaint code is quite
a complex task which shouldn’t be re-done from scratch each time.

What is required is a retargetable library for XML processing which can be
adopted to any environment. We are not aware about XML tools which position
themselves so. The best matches are limited to Java or C# worlds and can’t be
used, for example, in C.

For our developments we decided to use a simple virtual machine (VM) which
can be implemented in any language without significant efforts. Mapping be-
tween VM XML nodes and actual legacy tree nodes is a part of VM itself. So
our code for XML processing isn’t polluted by low-level details management.

While searching for an appropriate VM, we got an idea that instead of writing
a program for a chosen VM, it’s better to write an application in some best-
suiting, maybe specially created, language and design a specific VM specially
for the application.

The language of choice was Scheme. The main reasons for selecting it were its
excellence in symbolic computations (in particular, XML-like processing) and the
already existing SXML library [12]. Then, having code in Scheme, it was quite
natural to select the core Scheme itself as a VM.

That’s what we call the XML Virtual Machine: SXML library plus Scheme
VM plus seamless integration of S-expressions and legacy data.



6 Oleg Paraschenko

There is plenty of Scheme implementations, many of them are embeddable
(for example, Guile [6] is for C, SISC [7] is for Java), so we already have a solid
basis for having different XML VM implementations.

The biggest problem in this approach is the seamless integration. Code of a
Scheme implementation should be written in such a way that supports a trans-
parent mapping between S-expressions and legacy data structures. It’s required
for some Scheme functions, especially such as car or map, to work as over legacy
data as over S-expressions.

There are other issues which should be taken in account when using a Scheme
implementation as a VM. Of the main importance are garbage collection, con-
tinuations and error handling. These and related issues are discussed in more
details in the separate paper [19].

The SXML library can be used in the XML VM without modifications, but
some tweaking is desired. Due to the nature of S-expressions, the SXML tools
can’t get the parent or the preceding nodes without tricks which are sometimes
quite inefficient. But, having a mapping, it’s better to implement straightforward
VM-level functions native:parent, native:preceding-sibling and similar,
and make the SXML library to use them.

7 Sample: Python AST as XML

There is an example of usage of the XML VM in the Python programming
language for representing Python parse trees [20] (abstract syntax trees, AST)
as XML on top of the Scheme implementation Pysch [21].

The distribution package contains a tool to export Python AST as XML and
a transformation example written both in XSLT and SXSLT. Both code perform
conversion of an AST tree to a graph description for a graph drawing tool.

Pysch is a custom Scheme implementation for Python. The main purpose
for writing it was to check our statement that a new Scheme implementation
(and so an XML VM) can be created easily and fast. Experience shows that it’s
possible to prototype a compliant system in two-three working weeks.

Pysch is written in the object oriented manner. All navigation over S-expressions
is localized in the pair class in the functions car and cdr. We derive the
lazypair class from it to simplify lazy instantiation of S-expressions on de-
mand. The further derivative is a family of astpair classes that lazily map AST
objects to SXML.

SXML was not tweaked in this development because we didn’t need it. How-
ever, it is quite a trivial task to do if required.

8 Sample: GNU ‘find’ with XPath over the Filesystem

Many XPath tutorials suggest an analogue between XPath expressions and
UNIX file system paths, and in our developments we have added XPath ca-
pability to the standard GNU utility £ind [22]. Example:



Reusing XML processing code 7

$ ./find -xpath ’/bin/*[@size > /bin/bash/@size]’
/bin/ipv6calc
/bin/rpm

But making the analogue alive is not the main idea of this sample. Instead,
we demonstrated that it’s possible to take third-party software that deals with
hierarchical data and add an XML functionality without complete rewriting of
the software.

In this sample the Scheme VM is a special version of Guile, Scheme implemen-
tation in C, which supports lazy pairs [23]. The nodes of the global S-expression
which represents the filesystem as SXML are instantiated on demand.

In order to switch between the file metadata (C layer) and nodes in the
SXML tree (Scheme layer), the application maintains a map between them. One
of the uses of the map is to apply find predicates to nodes selected by an XPath
query.

XPath expressions are evaluated by the txpath [12]. This lirary is not con-
formant to the XPath specification, so in the future we will integrate the DDO
SXPath library [18]. Anyway, txpath works quite well, and we demonstrate how
to tweak parent and similar problematic axes to use the native versions instead
of the library default versions.

9 Related Work

First of all, there is plenty of applications which give access to internals by
exporting XML. It is sufficient for off-line processing, but it may degrade per-
formance a lot.

As for adopting to different tree models, it is quite common now. For exam-
ple, Jaxen [24], Java XPath engine, is positioned as ‘a universal object model
walker, capable of evaluating XPath expressions across multiple models.” [25]
There is also Saxon [26], XSLT and XQuery processor, which uses a tree nav-
igator interface to support different types of trees. It should be possible to use
Jaxen and Saxon with non-XML trees, but we are not aware about developments
in this area.

The step beyond XML world was made by the Java system JXPath [27]
from the Apache Software Foundation and by .NET API XPathNavigator [28]
from Microsoft. JXPath applies XPath expressions to graphs of objects of all
kinds: Java Beans, Maps, Servlet contexts, DOM etc, including mixtures thereof.
The XPathNavigator facilitates the ability to perform XPath queries over any
store implementing the IXPathNavigable interface. It is noteworthy that MSDN
article [28] provides an example in which the tree structure of the file system is
mirrored in the tree structure of the exposed XML Infoset, which is somehow
similar to our example of XPath over the file system.

The main limitation of the systems mentioned is their attachment to a specific
language or a platform. They don’t suit an application if it is written in another
language. The libraries described cover only Java and .NET, and we are not
aware about similar developments for other languages.



8 Oleg Paraschenko

Another limitation is that these libraries (except Saxon) support only XPath
and don’t support XSLT or XQuery.

As for virtual machines, authors of the XPath and XSLT systems sometimes
express the idea that their internal representation of parsed expressions and
execution plans looks like a basis for a virtual machine, but there are no traces
of developments in this area.

The only real XML-related virtual machine we aware of is XSLTVM [29]
from Oracle. XSLTVM is the software implementation of a ‘CPU’ designed to
run compiled XSLT code. The objectives are very similar to our ones, but the
XSLTVM paper doesn’t say anything about seamless binding of legacy data and
VM data.

The are a few developments which use the phrase ‘XML virtual machine’, but
in their case it means not a basis for developing XML tools, but some frameworks
for XML processing.

10 Conclusion and Future Work

In this paper we suggested the idea of XML view on legacy hierarchical data
and proposed to use XML tools over this view. For technical implementation
we introduced the XML virtual machine based on the Scheme programming
language. The approach is tested by developing reference implementations and
the results look good.

There are several directions for future work.

One is to make more reference implementations for other popular platforms
such as Java and .NET.

The SXML XPath implementation is good, but still needs more testing and
debugging. We are going to port test suits from other XPath processors to check
the SXML implementation of XPath.

Interesting tasks are optimization of evaluation of XPath expressions and
compilation of them into source or executable code.

Finally, we’d like to start working on a retargetable implementation of the
XSLT 1.0 standard.

References

1. World Wide Web Consortium. Extensible Markup Language (XML) 1.0 (Third
Edition), W3C Recommendation 04 February 2004.
http://www.w3.org/TR/2004/REC-xml-20040204/

2. World Wide Web Consortium. XML Path Language (XPath) Version 1.0, W3C
Recommendation 16 November 1999.
http://www.w3.org/TR/1999/REC-xpath-19991116

3. World Wide Web Consortium. XSL Transformations (XSLT) Version 1.0, W3C
Recommendation 16 November 1999.
http://www.w3.org/TR/1999/REC-xslt-19991116

4. LispWorks Ltd. Common Lisp HyperSpec.
http://www.lispworks.com/documentation/HyperSpec/



Reusing XML processing code 9

5. R. Kelsey, W. Clinger, J. Rees (eds.), Revised5 Report on the Algorithmic
Language Scheme, Higher-Order and Symbolic Computation, Vol. 11, No. 1,
August, 1998. http://www.brics.dk/ hosc/11-1/

6. Free Software Foundation. Guile (About Guile).
http://www.gnu.org/software/guile/guile.html

7. Scott Miller. SISC - Second Interpreter of Scheme Code.
http://sisc.sourceforge.net/

8. Ess Expressions. http://c2.com/cgi/wiki?EssExpressions

9. Lisp Vs Xml. http://c2.com/cgi/wiki?LispVsXml

10. Xml Isa Poor Copy Of Ess Expressions.
http://c2.com/cgi/wiki?XmllsaPoorCopyOfEssExpressions

11. Oleg Kiselyov. SXML Specification.
http://okmij.org/ftp/Scheme/xml.html#SXML-spec

12. Oleg Kiselyov. S-exp-based XML parsing/query/conversion.
http://ssax.sourceforge.net/

13. Oleg Kiselyov, A better XML parser through functional programming, LNCS
2257, pp. 209-224, Springer-Verlag, January 2002.

14. Oleg Kiselyov and Kirill Lisovsky. XML, XPath, XSLT implementations as
SXML, SXPath, and SXSLT. International Lisp Conference: ILC2002, October
2002.

15. Kirill Lisovsky. STX: XSLT-like XML transformation in Scheme.
http://www196.pair.com/lisovsky/transform/stx/

16. Jim Bender. (X)Querying XML in Scheme.
http://celtic.benderweb.net/webit/docs/xquery-pre/

17. O. Kiselyov and S. Krishnamurthi. SXSLT: Manipulation Language for XML. In
PADL, LNCS 2562, 2003.

18. Dmitry Lizorkin. DDO SXPath. http://modis.ispras.ru/Lizorkin/ddo.html

19. Oleg Paraschenko. Using DSLs on top of Scheme VM. To be published soon on
the author’s website http://uucode.com/

20. Oleg Paraschenko. Python AST as XML. http://pysch.sourceforge.net/ast.html

21. Oleg Paraschenko. Pysch: Scheme runtime environment in Python.
http://pysch.sourceforge.net/

22. Free Software Foundation. findutils - GNU Project - Free Software Foundation
(FSF). http://www.gnu.org/software/findutils/findutils.html

23. Oleg Paraschenko. Lazy pairs for Guile. http://uucode.com/texts/lazypair/

24. jaxen: universal java xpath engine - jaxen. http://jaxen.org/

25. jaxen: universal java xpath engine - FAQ. http://jaxen.org/faq.html

26. Michael Kay. The SAXON XSLT and XQuery Processor.
http://saxon.sourceforge.net/

27. The Jakarta Project. The JXPath Component.
http://jakarta.apache.org/commons/jxpath/index.html

28. Microsoft Corporation. XPathNavigator in the .NET Framework.
http://msdn.microsoft.com/library /default.asp?url=/library/en-
us/cpguide/html/cpconXPathNavigatorOverDifferentStores.asp

29. A. Novoselsky and K. Karun. XSLTVM - an XSLT Virtual Machine. XML
Europe 2000, Paris, France, 12-16 June 2000.
http://www.gca.org/papers/xmleurope2000/papers/s35-03.html



